估计变量的重要性是现代机器学习的重要任务。这有助于评估给定模型中功能的优点。在过去的十年中,已经开发了几种估计变量重要性的技术。在本文中,我们提出了对可变重要性估计的新兴方法的计算和理论探索,即:绝对收缩和选择操作员(LASSO),支持向量机(SVM),预测误差函数(Perf),随机森林(随机森林)( RF)和极端梯度提升(XGBOOST)在不同类型的现实生活和模拟数据上进行了测试。所有这些方法都可以无缝处理回归和分类任务,但是在处理包含丢失值的数据时都失败了。该实现表明,在高度相关数据的情况下,PURD具有最佳性能,紧随其后的是RF。 perf和xgboost是“渴望数据”的方法,它们在小数据尺寸上的性能最差,但在执行时间方面它们是最快的。当数据集中许多冗余功能时,SVM是最合适的。 perf的盈余是其自然截止量的零截止,有助于将正面和负分数分开,所有正分数表明基本和重要的特征,而负面分数表示无用的特征。 RF和Lasso的通用性非常多,尽管它们没有给予最佳效果,但它们几乎可以在所有情况下使用。
translated by 谷歌翻译
Recent work has shown the benefits of synthetic data for use in computer vision, with applications ranging from autonomous driving to face landmark detection and reconstruction. There are a number of benefits of using synthetic data from privacy preservation and bias elimination to quality and feasibility of annotation. Generating human-centered synthetic data is a particular challenge in terms of realism and domain-gap, though recent work has shown that effective machine learning models can be trained using synthetic face data alone. We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety, with ground-truth annotations for computer vision applications. In this report we describe how we construct a parametric model of the face and body, including articulated hands; our rendering pipeline to generate realistic images of humans based on this body model; an approach for training DNNs to regress a dense set of landmarks covering the entire body; and a method for fitting our body model to dense landmarks predicted from multiple views.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Meta Learning automates the search for learning algorithms. At the same time, it creates a dependency on human engineering on the meta-level, where meta learning algorithms need to be designed. In this paper, we investigate self-referential meta learning systems that modify themselves without the need for explicit meta optimization. We discuss the relationship of such systems to in-context and memory-based meta learning and show that self-referential neural networks require functionality to be reused in the form of parameter sharing. Finally, we propose fitness monotonic execution (FME), a simple approach to avoid explicit meta optimization. A neural network self-modifies to solve bandit and classic control tasks, improves its self-modifications, and learns how to learn, purely by assigning more computational resources to better performing solutions.
translated by 谷歌翻译
There are two important things in science: (A) Finding answers to given questions, and (B) Coming up with good questions. Our artificial scientists not only learn to answer given questions, but also continually invent new questions, by proposing hypotheses to be verified or falsified through potentially complex and time-consuming experiments, including thought experiments akin to those of mathematicians. While an artificial scientist expands its knowledge, it remains biased towards the simplest, least costly experiments that still have surprising outcomes, until they become boring. We present an empirical analysis of the automatic generation of interesting experiments. In the first setting, we investigate self-invented experiments in a reinforcement-providing environment and show that they lead to effective exploration. In the second setting, pure thought experiments are implemented as the weights of recurrent neural networks generated by a neural experiment generator. Initially interesting thought experiments may become boring over time.
translated by 谷歌翻译
Recent advances in language modeling have enabled new conversational systems. In particular, it is often desirable for people to make choices among specified options when using such systems. We address the problem of reference resolution, when people use natural expressions to choose between real world entities. For example, given the choice `Should we make a Simnel cake or a Pandan cake?' a natural response from a non-expert may be indirect: `let's make the green one'. Reference resolution has been little studied with natural expressions, thus robustly understanding such language has large potential for improving naturalness in dialog, recommendation, and search systems. We create AltEntities (Alternative Entities), a new public dataset of entity pairs and utterances, and develop models for the disambiguation problem. Consisting of 42K indirect referring expressions across three domains, it enables for the first time the study of how large language models can be adapted to this task. We find they achieve 82%-87% accuracy in realistic settings, which while reasonable also invites further advances.
translated by 谷歌翻译
A typical product or place often has hundreds of reviews, and summarization of these texts is an important and challenging problem. Recent progress on abstractive summarization in domains such as news has been driven by supervised systems trained on hundreds of thousands of news articles paired with human-written summaries. However for opinion texts, such large scale datasets are rarely available. Unsupervised methods, self-training, and few-shot learning approaches bridge that gap. In this work, we present a novel self-training approach, OpineSum, for abstractive opinion summarization. The summaries in this approach are built using a novel application of textual entailment and capture the consensus of opinions across the various reviews for an item. This method can be used to obtain silver-standard summaries on a large scale and train both unsupervised and few-shot abstractive summarization systems. OpineSum achieves state-of-the-art performance in both settings.
translated by 谷歌翻译
We consider the problem of automatically generating stories in multiple languages. Compared to prior work in monolingual story generation, crosslingual story generation allows for more universal research on story planning. We propose to use Prompting Large Language Models with Plans to study which plan is optimal for story generation. We consider 4 types of plans and systematically analyse how the outputs differ for different planning strategies. The study demonstrates that formulating the plans as question-answer pairs leads to more coherent generated stories while the plan gives more control to the story creators.
translated by 谷歌翻译
Modern machine learning requires system designers to specify aspects of the learning pipeline, such as losses, architectures, and optimizers. Meta-learning, or learning-to-learn, instead aims to learn those aspects, and promises to unlock greater capabilities with less manual effort. One particularly ambitious goal of meta-learning is to train general-purpose in-context learning algorithms from scratch, using only black-box models with minimal inductive bias. Such a model takes in training data, and produces test-set predictions across a wide range of problems, without any explicit definition of an inference model, training loss, or optimization algorithm. In this paper we show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners. We characterize phase transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all, induced by changes in model size, number of tasks, and meta-optimization. We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count. Finally, we propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose learning algorithms.
translated by 谷歌翻译
Many recent perturbation studies have found unintuitive results on what does and does not matter when performing Natural Language Understanding (NLU) tasks in English. Coding properties, such as the order of words, can often be removed through shuffling without impacting downstream performances. Such insight may be used to direct future research into English NLP models. As many improvements in multilingual settings consist of wholesale adaptation of English approaches, it is important to verify whether those studies replicate or not in multilingual settings. In this work, we replicate a study on the importance of local structure, and the relative unimportance of global structure, in a multilingual setting. We find that the phenomenon observed on the English language broadly translates to over 120 languages, with a few caveats.
translated by 谷歌翻译